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ligand.4b'11,16 The observation of a new strong IR absorption 
(Nujol mull) at ! 536 cm"1 is also consistent with the formulation 
of 6-(PF6)2 as having a coordinated NO" ligand, thus affirming 
the conclusion that the nitrosonium cation has been reduced by 
the dicopper(I) center in 3.4b.". |6- |l! 

As was found for the reactions of the |Cu2-02}"+ complexes 
with various reagents such as H+ and CO2, the present investi­
gation indicates that the ligands in 1-3 are exerting pronounced 
differential effects upon the reactivity of these species. While 
vacant coordination sites potentially exist in all of these com­
plexes,19 only 3 reacts with NO+ to give a coordinated nitrosyl 
ligand. Of course, copper-nitrosyl intermediates cannot as yet 
be ruled out in the cases where simple oxidation of Cu(I) by NO+ 

occurs in 1 and 2. 
There are a number of reasons that compound 6 is of interest. 

The nitrosyl moiety is a very common ligand in inorganic chem­
istry, and it readily forms complexes with most transition metals. 
Yet, there are only a few examples of systems where evidence for 
a copper-nitrosyl moiety exists,20,2' and until this study there were 
no structurally characterized synthetic examples. There is a 
biological relevance as well, since nitric oxide (NO) adducts of 
a number of copper proteins apparently do exist.20,22'23 Most 
importantly, Averill and co-workers20 have recently proposed that 
a copper-nitrosyl intermediate (Cu+-NO+ or equivalent) is present 
in the copper-containing nitrite reductase of Achromobacter cy-
clociastes (catalysis of NO2" -» N2O). Since NO+ ion is an 
oxidation-state equivalent of NO2",24 our reaction of nitrosonium 
ion with the dicopper(I) complex may represent a model for an 
early step in copper ion mediated nitrite reduction. Intercon-
versions of nitrogen oxide species such as NO2", NO, and N2O 
have previously been shown to be effected by polynuclear copper 
centers in enzymes such as hemocyanin, tyrosinase, and laccase.22,23 

A nitrous oxide reductase (N2O -* N2), possibly containing a 
dinuclear copper site, has also been recently characterized.25 

Further investigations in our laboratories will be directed toward 
the development of the redox and atom-transfer chemistry of 
nitrogen oxides with copper complexes. 
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The coordination chemistry of thiophene is an active area of 
research1 that is relevant to a molecular-level understanding of 
metal-catalyzed fossil fuel desulfurization.2"5 Previous research 
in this area has emphasized the role of the metal in promoting 
the reduction of the heterocycle. We have discovered a pathway 
whereby metals facilitate the oxidation of coordinated thiophene. 

?;4-Thiophene complexes have been described very recently.6,7 

Our studies7 have focused on Cp*Rh()74-TMT), [I]0 (TMT is 
2,3,4,5-tetramethylthiophene), prepared by the cobaltocene re­
duction of [Cp*Rh(7/5-TMT)]2+, [I]2+. The present communi­
cation is based on the following experiment: when a toluene 
solution of [I]0 is stirred under a dry oxygen atmosphere for 24 
h, we observe a clean conversion to the corresponding thiophene 
S-oxide complex Cp*Rh(TMTO), 28 (Figure 1). Thiophenes 
are completely unreactive toward oxygen under normal laboratory 
conditions. 2,5-Di-?erf-butylthiophene S-oxide and 2,5-di-tert-
octylthiophene S-oxide, the only known examples of thiophenic 
sulfoxides, are prepared by peroxy acid oxidations of the corre­
sponding bulky thiophenes.9 

The oxygenation reaction of [I]0 is accompanied by a color 
change from red to orange and reproducibly affords >90% isolated 
yields after removal of solvent. The 1H NMR spectrum of 2 
consists of three singlets in the ratio 6:15:6. The formulation has 
been confirmed by the observation of a parent ion in its field 
desorption mass spectrum (FDMS). The 13C NMR spectrum of 
2 shows three resonances in the range for ring carbon atoms, each 
of which shows coupling to 103Rh. Compared with the data for 
[I]0, 13C NMR resonances10 for the carbon centers adjacent to 
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Figure 1. The structure of (C5Me4Et)Rh(C4Me4SO). Selected bond 
distances for Rh-Cl through Rh-C4 range from 2.106 (4) to 2.146 (4) 
A, and for Rh-C9 through Rh-C13, the range is 2.197 (4)-2.219 (4) A. 
Within the thiophene S-oxide ring, the distances (in angstroms) are as 
follows: S-Cl, 1.778(4);C1-C2, 1.430 (4); C2-C3, 1.422 (6); C3-C4, 
1.434 (5); C4-S, 1.778 (4). 

sulfur are shifted 33 ppm downfield. The IR spectrum of 2 is 
dominated by a strong band at 1010 cm""1 which shifts to 976 cm"1 

when the compound is prepared under 18O2. These absorptions 
are assigned to c s o and are about 30 cm"1 lower in energy than 
for conventional sulfoxides." 

The structure of (EtMe4C5)Rh(TMTO) was confirmed by a 
high quality single-crystal X-ray diffraction study.12 The central 
rhodium atom is coordinated to nine carbon atoms, and the oxygen 
is bound to sulfur. The TMTO ligand is nonplanar, with the sulfur 
atom puckered up from the plane of the four ring carbon atoms 
with a dihedral angle of 30.6 (4)° and a Rh-S distance of 2.846 
(2) A. The oxygen is axial, with an S-O distance of 1.505 (3) 
A, slightly longer than those previously observed for sulfoxides. 
This indicates a more polar S-O bond." 

Oxygenation of the TMT ligand strongly modifies the redox 
properties of the complex. Whereas [I]0 can be reversibly oxidized 
at -394 mV vs the Ag/AgCl couple, a cyclic voltammetry ex­
periment shows that 2 resists oxidation until far more positive 
potentials («900 mV). Compound 2 features a reduced metal 
center (Rh(I)) and an oxidized ligand (S(IV)) whereas [I]2 + 

features an oxidized metal center (Rh(III)) and a reduced ligand 
(S(II)). We have explored methods for "redistributing" the sites 
of oxidation. Thus, protonation of 2 (acetone solution, 2 equiv 
of HOTf, 0 0C). gives [I]2 + ,1 3 whereas treatment of an Et2O 
suspension of [ I ] 2 + with 2 equiv of KOSiMe3 (Aldrich), an an­
hydrous source of O2", gave 2 (see Scheme I). Previous work 
on cationic 7r-thiophene complexes has shown that nucleophiles 
attack at carbon;3 ours is the first example of nucleophilic addition 
to the sulfur atom. 
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Scheme I 

RhCp* 

The direct oxygenation of a thioether is unprecedented, although 
metal ions are well-known to catalyze this process.14,15 An oxygen 
uptake experiment (toluene, 30 min, 25 0C) showed that [I]0 

consumes 0.54 equiv of O2. The material isolated after 1 h 
analyzed well for 2, and the FDMS shows only Cp*Rh(TMTO). 
The 1H NMR spectrum, however, shows a mixture of two com­
pounds in a 1:3 ratio, the more abundant of which is Cp*Rh-
(TMTO), 2. The minor component has the same 1H NMR 
spectral pattern with slightly different shifts. Since the two 
compounds have the same formula (FDMS) and have very similar 
1H NMR spectra, they could be isomeric forms of Cp*Rh-
(TMTO).16 When we monitored the UV-vis spectra for the 
conversion of [I]0 into 2, we observed initial isosbestic behavior 
corresponding to first-order decay of [I]0 , followed by a slower 
process. The rate of oxygenation of [I]0 was first order in [I]0 

and was shown to qualitatively depend on P02. 
A double labeling experiment17 confirmed that the thiophene 

is not released in the course of the oxidation. The stoichiometry 
and the rate information indicate that the reaction involves the 
activation of O2 by [I]0 followed by a rapid transfer of an oxygen 
atom to give 2. The rhodium center in [I]0 is coordinatively 
saturated (18e), requiring that the mechanism of dioxygen ac­
tivation be unconventional. Recent work6,7 has demonstrated that 
the sulfur atom in [I]0 is highly basic. 

In summary, we have developed two methods for the oxidation 
of thiophene giving the first examples of transition-metal thiophene 
S-oxide complexes. Our method involves the activation of mo­
lecular oxygen, and the other entails nucleophilic addition to 
thiophenic sulfur. Both are unprecedented and merit further work 
with respect to their generality and mechanism. 
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